If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9a^2-32=0
a = 9; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·9·(-32)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{2}}{2*9}=\frac{0-24\sqrt{2}}{18} =-\frac{24\sqrt{2}}{18} =-\frac{4\sqrt{2}}{3} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{2}}{2*9}=\frac{0+24\sqrt{2}}{18} =\frac{24\sqrt{2}}{18} =\frac{4\sqrt{2}}{3} $
| 2+b=-6+2b | | 0.5(x+12)=4x–1 | | (4x-7)(2x+6)=1x(8x+5) | | 8x-5=7x+50 | | 3x+25x-9=7(4x+7) | | x+100-100=10 | | 189x^2-96x+12=0 | | 0=x/16x | | -3m+8=-10–3m | | x^2-20x=20 | | -2w+6=-2w | | 3^2x-1=112 | | 6-4(m-5)=-8m+10 | | 5x-22=2x+5 | | 4+6t=-20;t=-4 | | 1•6=b-8 | | -1–9w=-9w–1 | | X/5+x/2=2x/7 | | 2+y=y+10 | | 6-1x=20-3x | | 2x/5+7/2=3x/4 | | p+|10|/|-5|=-8 | | -2(4x-5)=8x+10 | | 8–j=-j–4 | | -6.2z=1.86 | | 2=6j | | p+|10|/|-5=-18 | | 3/4(9x+6)=12 | | z/2+2=8-z/2 | | −(x+4)=2(4x−6) | | 3x+5+10x-7=18- | | -0.6x=-1.8 |